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Abstract— Continuous human affect estimation from video
data entails modelling the dynamic emotional state from a
sequence of facial images. Though multiple affective video
databases exist, they are limited in terms of data and dy-
namic annotations, as assigning continuous affective labels to
video data is subjective, onerous and tedious. While studies
have established the existence of signature facial expressions
corresponding to the basic categorical emotions, individual
differences in emoting facial expressions nevertheless exist;
factoring out these idiosyncrasies is critical for effective emotion
inference. This work explores continuous human affect recogni-
tion using AFEW-VA, an ‘in-the-wild’ video dataset with limited
data, employing subject-independent (SI) and subject-dependent
(SD) settings. The SI setting involves the use of training and
test sets with mutually exclusive subjects, while training and
test samples corresponding to the same subject can occur in
the SD setting. A novel, dynamically-weighted loss function is
employed with a Convolutional Neural Network (CNN)-Long
Short-Term Memory (LSTM) architecture to optimise dynamic
affect prediction. Superior prediction is achieved in the SD
setting, as compared to the SI counterpart.

I. INTRODUCTION AND BACKGROUND

Automatic emotion inference plays a critical role in build-
ing intelligent human-machine interfaces that can understand
and respond to human emotions. Emotions are integral to
perception, rational decision making, and other cognitive
functions [25]. Previously, there have been tremendous ef-
forts to develop methods that can accurately recognise and
analyse human affect [12]. Research on emotion inference
focuses on either categorising human emotions into the
universal emotional classes [6], namely, happiness, fear,
surprise, sadness, disgust, contempt, and anger, or mapping
them onto a continuous dimensional plane [28], for example,
spanned by the valence and arousal dimensions. Valence
is defined as the degree of pleasantness or unpleasantness
elicited by a stimulus, while arousal describes the extent of
calmness or excitation (physiological activity) evoked by it.
The continuous model is more representative of emotions as
compared to the categorical counterpart, as it can lead to an
accurate assessment of the natural affective state, as evoked
emotions are often mixed, complex, subtle and ambiguous
in real-world scenarios [8].

Since emotional expressions evolve dynamically [6], it is
essential to model short and long-range dependencies among
emotional expression features observed over a given time
interval. A continuous emotional space not only describes
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complex emotional states, but naturally enables the repre-
sentation by a temporal model [20]. Multiple studies have
employed deep neural networks to learn spatio-temporal
dependencies for emotion inference [13], [16], [30], [32].
Affect recognition systems typically use affective data cap-
tured in controlled settings [1], [23], but recent studies have
focused on recognising ‘in-the-wild’ emotional expressions
captured under naturalistic settings [17], [31].

Although multiple affective video databases exist [15],
[17], [27], they are typically limited by the amounts of
annotated data, unlike affective image databases that contain
millions of samples [22]. The scarcity of large corpora
of affective annotated video data can be attributed to (a)
the difficulty in capturing emotional data under naturalistic
conditions and, (b) the difficulty in assigning static and
dynamic emotion labels to large amounts of data [8]. In
addition, limited video data present a challenge as emotional
patterns are to be learnt spatio-temporally, unlike image data
where spatial emotion representations need to be learnt.

Early studies on basic emotions state the existence of a
core facial configuration reflecting the emotional state of
a person [5]. In contrast, other scientific frameworks posit
that expressions of the same emotion vary substantially
across individuals and situations [3]. For example, the typical
expression of anger (eyebrows furrowed, eyes wide, lips
tightened) might sometimes be accompanied with additional
facial movements such as a widened mouth, while in other
instances, a facial movement might be missing with respect
to the prototype. Such variations are considered to be a
meaningful part of an emotional expression, because facial
movements are functionally tied to other factors such as
external context and the person’s internal affective state.
Hence, while inferring affect computationally, it becomes
essential to consider models, which are both subject-specific
and subject-agnostic. Specifically, limited data is a serious
impediment in learning emotion-specific facial expressions
and it is, therefore, likely that machine learning and deep
learning algorithms learn identity-specific characteristics for
decoding observed expressions of emotions. Consequently,
how training and test data are divided plays a vital role [9],
[29] in determining recognition performance. A comparison
of subject-specific vs subject-agnostic settings is, therefore,
critical in lean data settings. We employ both subject-
dependent (SD) and subject-independent (SI) settings to infer
valence and arousal scores on the AFEW-VA [17], an in-the-



Fig. 1: Approach overview depicting continuous/dynamic valence (Val) and arousal (Asl) score prediction with limited data
in the AFEW-VA [17] dataset. The proposed network and loss function are evaluated in SD and SI settings.

wild video dataset with limited data. The SI setting involves
the use of training and test sets with mutually exclusive
subjects, while training and test samples corresponding to
the same subject can occur in the SD setting (see Fig. 1).
Specifically, we make the following research contributions:

1) We examine the SI and SD settings for valence and
arousal inference on the sample-limited AFEW-VA
dataset. Given (a) the small size of AFEW-VA dataset,
and (b) the inverse-exponential (e−x) distribution ob-
served for the number of samples (video snippets)
available per subject (see Fig. 2 (left)), we note vastly
different emotion inference performance in the SI and
SD settings.

2) While both the SI and SD settings involve mutually
exclusive training and test sets, these sets also involve
mutually exclusive subjects in the SI setting as men-
tioned above. All performance metrics considered here
substantially improve in the SD setting as compared
to the SI setting. These results reveal that learning
individual encoding is critical for accurate arousal and
valence recognition on AFEW-VA.

3) We also propose a novel dynamically-weighted loss
function L to simultaneously improve the correlation
as well as minimise the error between the target
values and predicted valence and arousal values via
the Convolutional Neural Network (CNN)-Long Short-
Term Memory (LSTM) network depicted in Fig. 3.

4) To the best of our knowledge, this study serves as an
upper limit benchmark for affect inference in the SD
setting on the AFEW-VA dataset.

II. EXPERIMENTS

We now describe the AFEW-VA dataset, the pre-
processing step of face extraction, our CNN-LSTM archi-
tecture, evaluation metrics, and the proposed loss function.

A. Dataset

To examine emotion inference using limited data, we use a
publicly available video dataset, AFEW-VA [17], which is a
subset of AFEW [4]. While AFEW is an affective database
with categorical annotations of the six universal emotions
plus a neutral class, AFEW-VA consists of a subset of 600
video sequences with continuous annotations of valence and

arousal values in the range of [−10, 10] for each frame in the
video sequence, whose length varies between 10–145 frames.
The videos in the database are collected from movies, which
are closer to real-world scenarios than controlled lab settings.
The 240 subjects in AFEW-VA denote the video actors, who
mimic real-world human behaviour [4].

B. Methods

1) Pre-processing: As an initial step, we extract faces
from each frame in the AFEW-VA videos. Given an input
video, we employ Multitask Cascaded Convolutional Neural
Networks (MTCNN) [35], which is a unified framework
for both face detection and face alignment. Sometimes,
face detection algorithms are prone to fail while detecting
faces in-the-wild. In such a case, we employ the Contrast
Limited Adaptive Histogram Equalization (CLAHE) [26]
technique to enhance image contrast. The output of CLAHE
is passed to MTCNN for face detection. If the face is still not
detected, the bounding box of the neighbouring (preceding or
succeeding) frame is positioned on the current frame, given
that the face location differences in neighbouring frames are
negligible. Rather than discarding a frame when the face is
not detected via MTCNN, we thus ensure the inclusion of
almost all frames in the AFEW-VA, which is relatively small
to begin with.

In each video, we consider a sequence (snippet) of eight
consecutive frames [2] with a stride of 1 as an input sample.
The total number of derived samples from the dataset is
25, 759, with the input dimensionality of each sample being
8× 3× 128× 128, i.e., each input sample (or video snippet)
has eight frames of size 3 × 128 × 128. Input samples and
affect labels are normalised to the [0, 1] and [−1, 1] range,
respectively, before feeding them to a CNN-LSTM network.
Fig. 2 (left) shows the distribution of the number of video
snippets per subject.

2) Architecture: The architecture chosen for this study
is illustrated in Fig. 3. We use a CNN-LSTM network, in
which spatio-temporal patterns are learned using a 2D-CNN
network for each frame followed by LSTM layers. For the
CNN architecture to learn spatial patterns, we chose ResNet-
18 and ResNet-50 [10] architectures, however, we report
our experimental results for the ResNet-18 architecture, as
obtained results were fairly similar in both cases. The final



Subject ID
0

200

400

600

800

1000

1200

1400
Nu

m
be

r o
f s

am
ple

s 0.83

0.17

0.17 0.83

Fig. 2: (Left) Distribution of the number of input samples per subject in the AFEW-VA dataset. (Right) Illustration of the
dynamic weight functions f and g used in Eq. 4 with k = 2, α = 1, and n = 60.
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Fig. 3: Overview of the proposed CNN-LSTM network
architecture for a 3-frame video snippet. tj , tj+1, and tj+2

denote the time steps corresponding to the three frames.

classification layer of ResNet-18 is replaced with a linear
layer with 300 neurons (this number was empirically found to
be optimal). The outputs of the respective CNN networks are
fed as input to an LSTM layer, followed by another LSTM
layer, both with 256 units. This is followed by a linear layer
with 128 neurons and a final regression layer for estimating
valence or arousal scores in [−1, 1].

3) Metrics and Loss Function: Similar to past studies
examining dimensional emotion estimation [14], [17], [33],
the performance metrics used here are Root Mean Square
Error (RMSE), Pearson Correlation Coefficient (PCC) and
Concordance Correlation coefficient (CCC). If θ and θ̂ de-
note the ground truth and predicted labels, respectively, the
metrics are defined as:

RMSE(θ, θ̂) =

√
E[(θ − θ̂)2] (1)

PCC(θ, θ̂) =
E[(θ − µθ)(θ̂ − µθ̂)]

σθσθ̂

(2)

CCC(θ, θ̂) =
2σθσθ̂PCC(θ, θ̂)

σ2
θ + σ2

θ̂
+ (µθ − µθ̂)

2
(3)

where µθ and σθ correspond to the mean and the standard
deviation of θ, respectively, and E denotes the expected
value.

In dimensional affect inference, the aim is to minimise
RMSE, while simultaneously maximising PCC and CCC.
The most common approach employed for regression model
optimisation is to use individual loss functions, namely,
Mean Squared Error (MSE) or inverse-CCC [11], [14], [18].

TABLE I: RMSE, PCC and CCC values of estimated valence
using various loss functions in the subject-dependent setting.

Loss
RMSE ↓ PCC ↑ CCC ↑

MSE PCC CCC

✓ 0.17 ± 0.06 0.73 ± 0.26 0.68 ± 0.32
✓ 0.74 ± 0.08 0.52 ± 0.08 0.31 ± 0.05

✓ 0.25 ± 0.02 0.69 ± 0.11 0.69 ± 0.10
✓ ✓ ✓ 0.22 ± 0.08 0.73 ± 0.08 0.73 ± 0.08

L (proposed) 0.13± 0.01 0.89 ± 0.02 0.89 ± 0.02

Other studies also use a combination of losses in addition
to using the losses individually [16], [33]. For example, the
authors of [16] use a weighted sum of the MSE, CCC and
PCC losses, where weights are shake-shake regularisation
coefficients [7] sampled randomly and uniformly in the range
[0, 1]. Differently, we propose a dynamically weighted loss
function L, defined as:

L = f ∗ LMSE + g ∗ LCCC (4)

where LMSE is the MSE loss, LCCC = 1 - CCC, and f and
g are dynamic weight functions given by f = α

(
i
n

)k
and

g = 1−
(
i
n

)k
, where i denotes the ith epoch in the training

phase of a total n epochs, and α ∈ R and k ∈ Z+ are hyper-
parameters controlling the normalisation and non-linearity,
respectively. Fig. 2 (right) illustrates the weight functions f
and g.

For estimating affect, generally, LCCC is used to maximise
the correlation between the ground-truth and the predicted
values. When a combination of loss functions with static co-
efficients is used, the model tries to simultaneously optimise
the metrics, which may result in a sub-optimal model. Our
proposed loss function employs dynamic weights to ensure
that the network learns to maximise the correlation initially
and, then, minimise the error. Empirically, the proposed loss
function results in improved model performance as shown in
Table I.

C. Implementation

The model is implemented using the open-source software
library PyTorch [24] and is trained on an NVIDIA A100
GPU with 40GB memory. The Adam optimiser is used with
a decrease of the learning rate by a factor of 10 for every



TABLE II: RMSE, PCC and CCC values of estimated valence and arousal for the SI and SD settings.

Mode Valence Arousal

RMSE ↓ PCC ↑ CCC ↑ RMSE ↓ PCC ↑ CCC ↑

Subject-independent 0.35 ± 0.02 0.12 ± 0.11 0.10 ± 0.10 0.31 ± 0.02 0.29 ± 0.12 0.26 ± 0.12
Subject-dependent 0.13 ± 0.01 0.89 ± 0.02 0.89 ± 0.02 0.12 ± 0.00 0.93 ± 0.00 0.93 ± 0.00

15 epochs, with the initial learning rate set to 10−3. The
models are trained for 60 epochs with a batch size of 128
and a dropout rate of 0.5. In the proposed loss function,
fine-tuning is performed for hyper-parameters k ∈ [1, 2, 3],
and α ∈ [1, 2, 20]. The results reported are the µ± σ values
obtained via five-fold cross-validation.

III. RESULTS AND DISCUSSION

Table I shows the RMSE, PCC, and CCC values obtained
using the individual loss functions, a combination of the
loss functions, and the proposed dynamically-weighted loss
function for valence estimation within the SD setting. As
mentioned earlier, a typical objective of regression models
is to simultaneously minimise RMSE, while maximising
PCC and CCC. When using the CCC loss function alone
(row 3), the obtained RMSE is worse as compared to its
MSE loss counterpart (row 1). Conversely, while using the
MSE loss function alone, the model performs better in
terms of minimising RMSE, as compared to its CCC loss
counterpart. When the PCC loss alone (row 2) is used, the
achieved PCC and CCC values are lower than the CCC loss
counterpart. This is because, as can be seen in Eq. 3, CCC
also incorporates the PCC value, but penalizes correlated
signals with different means [19]. That is, if the predicted
feature has a trend similar to the target feature, but the
predicted value is far from the target value, implying a high
error, a low CCC is obtained, although the PCC is high. It is
also observed that the RMSE value is optimised better when
the CCC loss is used, as compared to the PCC loss.

In comparison to the individual loss functions, when a
weighted sum of the three loss functions is employed (where
weights are the shake-shake regularisation coefficients [7], as
in [33]), PCC and CCC values are higher than the individual
loss counterparts. However, a trade-off is observed in terms
of RMSE value as compared to the MSE loss counterpart.
The proposed loss function performs the best as the RMSE
value is the lowest, while the PCC and CCC values are
the highest as compared to the other loss functions. To
account for optimising all three metrics simultaneously, the
proposed loss function is designed to learn the correlations
initially and, later, to minimise the mean squared error,
in a continuous fashion where the (non-)linearity factor is
controlled by the hyper-parameter k.

In this study, we perform both subject-dependent and
subject-independent experiments for valence and arousal in-
ference using AFEW-VA. While prior studies only performed
subject-independent experiments [13], [14], [16], [21], [33],
[36], whether affect inference is required in an SI or SD
setting may depend on the use-case. E.g., if the affect

inference system entails inferring affect from the end user,
the model should be optimised for each user. Conversely, if
the affect recognition is to be achieved independently of the
end-user, the model should be optimised for the SI setting.
We employ the proposed loss function in our experiments
as it results in improved RSME, PCC and CCC values, as
compared to the other loss functions.

The values in Table II are obtained using the proposed loss
functions for the subject-independent and subject-dependent
settings. As seen in the table, all performance metrics are
improved in the SD setting as compared to the SI setting, as
the SD setting results in the lowest RMSE and highest PCC
and CCC values for both valence and arousal. In contrast,
the model is unable to learn generalised features to discern
diverse valence or arousal values in the subject-independent
framework. To obtain further insights, we use t-SNE [34] to
visualise the features learnt to estimate valence and arousal
in the two settings (see Fig. 4). As can be seen, the learned
features for valence and arousal prediction in the SD setting
are better separated as compared to the SI setting, where
features corresponding to high/low valence/arousal values
overlap considerably.

Overall, the results in the SD setting indicate the upper
limit for arousal and valence estimation on the AFEW-VA
dataset. Moreover, the results in Table I demonstrate that
the proposed loss function results in superior prediction
performance. Employing this loss function on the AFEW-
VA dataset, we observe considerably more precise valence
and arousal estimation in the SD setting as compared to the
SI setting. Cumulatively, the results reveal that for the small
AFEW-VA dataset with a highly imbalanced distribution
of input samples per subject, identity-specific characteris-
tics substantially impact emotional inference. Conversely,
emotion-specific representations cannot be efficiently learned
across subjects as typified by the poor valence/arousal esti-
mation in the SI setting.

IV. CONCLUSIONS AND FUTURE WORK

In this study, we have examined the influence of limited
video data and of an imbalanced distribution of samples
per subject on continuous human affect (valence, arousal)
inference using the AFEW-VA dataset. While some stud-
ies in psychology state the existence of unique emotional
expressions for the basic emotions, on the contrary, oth-
ers hypothesise that emotional expressions of the same
emotion vary substantially across individuals (and often
for the same individual) due to factors such as context,
social environment, etc. Hence, to infer affect computation-
ally, it is essential to examine the affect inference using
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Fig. 4: Visualisations of the feature distribution generated by t-SNE for valence (top row) and arousal (bottom row) using
subject-dependent (left) and subject-independent (right) frameworks.

subject-dependent and subject-independent settings. A novel
dynamically-weighted loss function is proposed, and is found
to enhance correlation as well as reduce error between the
target and predicted values. Empirically, we observe that
this loss function results in an improved performance than
competing loss functions. Furthermore, superior performance
in terms of RMSE, PCC, and CCC metrics is observed
in the subject-dependent framework as compared to the
subject-independent counterpart. The results indicate that the
features of valence and arousal learnt by the model are not
generalisable across subjects. Visualisations convey that the
features of the subject-independent framework are not as
discriminative as the subject-dependent setting.

In the future, we plan to explore the influence of
individual-specific factors on affect inference using other
affective video datasets, such as RECOLA [27] and Af-
fWild2 [15]. We also plan to examine the effect of fusing
multiple modalities, such as audio and context, for affect
inference using subject-dependent and subject-independent
settings.
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