Intelligent Computing

A SCIENCE PARTNER JOURNAL

'.) Check for updates

RESEARCH ARTICLE

Exploring Electroencephalography-Based
Affective Analysis and Detection

of Parkinson’s Disease

Ravikiran Parameshwara', Soujanya Narayana'f,
Murugappan Murugappan®>*, Ibrahim Radwan’, Roland Goecke’,
and Ramanathan Subramanian'’

'Human-Centred Technology Research Cluster, University of Canberra, Canberra, Australia. 2Department
of Electronics and Communication Engineering, Kuwait College of Science and Technology, Kuwait
City, Kuwait. *Department of Electronics and Communication Engineering, Vels Institute of Sciences,
Technology, and Advanced Studies, Chennai, India. “Centre for Excellence in Unmanned Aerial Systems,
Universiti Malaysia Perlis, Perlis, Malaysia.

*Address correspondence to: ram.subramanian@canberra.edu.au
tThese authors contributed equally to this work.

While Parkinson's disease (PD) is typically characterized by motor disorder, there is also evidence of
diminished emotion perception in PD patients. This study examines the utility of electroencephalography
(EEG) signals to understand emotional differences between PD and healthy controls (HCs), and for
automated PD detection. Employing traditional machine learning and deep learning methods on multiple
EEG descriptors, we explore (a) dimensional and categorical emotion recognition and (b) PD versus HC
classification from multiple descriptors characterizing emotional EEG signals. Our results reveal that
PD patients comprehend arousal better than valence and, among emotion categories, fear, disgust, and
surprise less accurately, and sadness most accurately. Mislabeling analyses confirm confounds among
opposite-valence emotions for PD data. Emotional EEG responses also achieve near-perfect PD versus
HC recognition. Cumulatively, our study demonstrates that (a) examining implicit responses alone
enables (i) discovery of valence-related impairments in PD patients and (ii) differentiation of PD from
HC and that (b) emotional EEG analysis is an ecologically valid, effective, practical, and sustainable tool
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for PD diagnosis vis-a-vis self-reports, expert assessments, and resting-state analysis.

Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder of the
central nervous system that affects movements, often causing
tremors. PD is characterized by the progressive loss of dopami-
nergic neurons in the substantia nigra [1]. In addition to motor
dysfunctions, cognitive, behavioral, and emotional defects are
common in PD [2], affecting over 10 million people globally [3].

A number of studies have examined motor and cognitive
impairments in PD patients by examining explicit user responses
(e.g., performance in recognition tasks and self-reports) or
implicit responses such as electroencephalography (EEG) sig-
nals [4]. Some works detect PD from abnormalities in resting-
state EEG [5,6]. Resting-state EEG is acquired in a highly
controlled setting, e.g., requiring the subject to remain motion-
less with eyes closed in a dim and quiet room, which makes this
setting ecologically invalid. A more realistic setting involves
EEG acquisition during routine tasks such as music listening
[7] or movie watching [8].

As movie and musical stimuli are often emotion eliciting [9],
they enable researchers to understand how PD patients perceive
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emotions. Apart from specific emotions, some studies focus on
PD perception of the valence (feeling of pleasantness/aversion)
and arousal (emotional intensity) dimensions [10]. Prior studies
show that PD patients have a deficit in recognizing positive and
negative valence emotions from prosody [11] and facial expres-
sions [12], and reduced reactivity to highly arousing pictures
[13]. Recognizing emotions is critical to social interaction and
communication, apart from inferring nonverbal behavior such
as emotional voice and facial expressions [14,15].

Implicit physiological and biological signals reflect the char-
acteristic activity of the central nervous system and cannot
be intentionally suppressed. Recent studies have extensively
employed biosignals [16,17] for emotion perception in healthy
subjects. EEG, functional magnetic resonance imaging (fMRI),
magnetoencephalography (MEG), and positron emission tomo-
graphy (PET) provide more reliable information on emotional
states compared to other modalities [18]. EEG is noninvasive,
has high temporal resolution, and can detect changes in brain
activity over a span of milliseconds. EEG frequency bands are
known to correlate with emotions [19]. Hand-coded EEG
descriptors such as spectral power vectors (SPVs) enable emotion
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detection, while convolutional neural networks (CNNs) can auto-
matically learn cognitive and emotional correlates [17,20].

This study examines EEG-based PD emotion perception
via a comparative analysis of data acquired from PD patients
vis-a-vis healthy controls (HCs). We explore both low-level
EEG descriptors such as SPVs and common spatial patterns
(CSPs), and the intermediate EEG image and movie repre-
sentations [20] to this end. SPVs represent the power distribu-
tion across different frequency bands, while CSPs are popular
descriptors for maximizing interclass discriminability [21].
EEG image descriptors are synthesized via topomaps captur-
ing both spectral and spatial activity, whereas the EEG movie
descriptor additionally captures temporal activity trends. We
employ classical machine learning (ML) and deep learning
frameworks such as 1D-, 2D-, and 3D-CNNs for emotion
decoding. As shown in Fig. 1, we perform categorical and
dimensional emotion recognition (binary valence and arousal
classification) and PD versus HC recognition from EEG data.

The key findings from our study are as follows: (a) Dimensional
analysis reveals that arousal is better perceived in PD than
valence; similar or superior classification is achieved with HC
data for both attributes. (b) Fine-grained analyses of emotion
class mislabeling reveal confounds among opposite-valence
emotions for PD data; this trend is not discernible for HC.
(c) Near-ceiling PD versus HC classification (F1>0.97) is achieved
with a 2D-CNN on emotional EEG data, implying that affective
neural responses of PD and HC subjects are highly discrim-
inable. Analyzing emotional neural responses can, therefore,
enable facile PD diagnosis and treatment. Our study makes the
following contributions:

o It examines (a) PD versus HC recognition and (b) emotion
perception in PD exclusively from EEG classification trends.
While resting-state EEG analysis has achieved high PD recogni-
tion accuracy [6,22], it requires EEG acquisition in a highly
controlled setting. In contrast, we examine EEG signals acquired
during the routine task of emotional media viewing, which addi-
tionally enables PD emotion understanding.

« PD diagnosis and treatment heavily rely on patient self-
reports and expert assessments. While the importance of pre-
clinical diagnosis and the need for objective monitoring with
wearables [23] has been highlighted recently, high PD versus
HC discriminability achieved with passive data acquisition dur-
ing a routine task points to a promising alternative.

______________

o We employ multiple (a) EEG descriptors and (b) machine
and deep learning recognition frameworks for analyses. Among
the EEG descriptors, CSPs and SPVs are optimal for emotion
and PD recognition, respectively. CNN frameworks trained
with intermediate EEG image and movie descriptors, however,
achieve superior emotion and PD recognition performance.

To highlight the novelty of our study, we review related work
on (a) emotional impairments in PD patients and (b) the use
of biosignals to assess emotional impairments.

Emotional impairments in PD patients

PD patients show not only motor symptoms but also cognitive
[24] and emotional [25] deficits. Kan et al. [26] report PD defi-
cits in recognizing the fear and disgust facial emotions. Clark
et al. [12] note impaired anger recognition in PD patients with
left hemisphere pathology and reduced surprise recognition
with right hemisphere pathology. Baggio et al. [27] observe
PD deficits in recognizing sadness, anger, and disgust, while
Narme et al. [28] note impaired recognition of anger and fear.
A meta-analysis indicates an initial PD deficit for negative
emotions [25] and later for positive emotions [29]. Some stud-
ies employ nonvisual stimuli, e.g., auditory and verbal, to assess
PD emotion deficits. In an emotional voice test [30], PD
patients in general exhibit impaired recognition and expres-
sion. Kan et al. [26] observe reduced recognition of fear, sur-
prise, and disgust from text.

Using biosignals to assess impairments
Emotion is a psychophysiological expression related to external
stimuli, mood, and personality [9,16]. Wearable sensing tech-
nologies can help examine biosignals and interpret associated
emotions. Various physiological signals (or biosignals) such as
EEG, MEG, fMRY, facial (micro)expressions, eye movements,
electrodermal activity, and heart rate have been employed to
study emotions induced by stimuli, such as facial imagery [31],
audiovisual music and movie clips [9,16], and advertisements
[17], or impairments thereof.

fMRI brain activations reveal stronger activation in somato-
sensory regions during emotion processing for PD patients
[32]. fMRI analyses show reduced functional activity in the
left and right posterior putamen [33], disturbing emotional
processing. Spontaneous facial expressivity in PD observed via
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Fig. 1. Overview of our pipeline. EEG preprocessing and extraction of low-level features such as SPVs and CSPs is followed by feeding of these features or intermediate EEG
image/movie representations to machine and deep learning frameworks to perform dimensional and discrete emotion recognition, and PD versus HC classification (HV and
LV refer to high and low valence, while HA and LA refer to high and low arousal). Emotions belonging to each category are described in the “Valence classification” section.
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electromyogram (EMG) and electrocardiogram (ECG) signals
reveal differences between PD patients and controls [34]. A
neuroimaging study involving fearful faces notes that dopa-
mine levels modulate the amygdala’s response in PD [35], and
amygdala dysfunction induces impaired reactions to fear-
inducing stimuli.

CNNs have been employed for EEG-based seizure predic-
tion [36], fMRI-based schizophrenia detection [37], etc. Deep
learning methods learn salient and latent neural representa-
tions [38]. EEG-based categorical emotion recognition in PD
patients has been pursued via higher-order spectral statistics
[8,39-41]. PD recognition via spectral analysis of resting-state
EEG has been performed with k-nearest neighbor (kNN) and
support vector machine (SVM) classifiers [22]. A 13-layer
1D-CNN for PD versus HC classification with resting-state EEG
has been proposed in [6]. Binary PD versus HC EEG classifica-
tion using a convolution recurrent neural network (CRNN) has
been proposed in [42].

Identifying research gaps

While it is largely known that PD patients face emotional defi-
cits, only a few studies examine these deficits via implicitly
acquired biosignals, such as EEG. Moreover, prior studies on
automated PD diagnosis have only examined resting-state EEG,
but not emotional EEG signals. Emotional EEG signals can be
(a) acquired via easy-to-use, portable headsets under routine
settings and (b) utilized for PD recognition plus studying PD
emotion deficits as described in this work. Table 1 compares
and contrasts our work against the literature; evidently, our
approach achieves optimal PD recognition with ecologically
valid data, thus differs from prior work on resting-state and
emotional EEG.

Materials and Methods

Dataset

The dataset comprises EEG signals from 20 nondemented PD
(10 male/10 female) and 20 HC (9 male/11 female) subjects
from Hospital Universiti Kebangsaan Malaysia, Kuala Lumpur,
upon ethics approval (approval no. UKM1.5.3.5/244/FF-354-
2012) [39,41]. The demographic and PD severity of the patients
are included in Table S1. EEG data were recorded via the
14-channel wireless Emotiv Epoc headset (128-Hz sampling
rate). Audiovisual stimuli were used to induce the 6 Ekman emo-
tions (sadness, happiness, fear, disgust, surprise, and anger),
resulting in a total of 1,440 samples (2 classes X 20 subjects X
6 emotions X 6 trials/emotion). The emotional stimuli were
gathered from video clips collected from various sources on
the internet, the International Affective Picture System (IAPS)
[43] database, and the International Affective Digitized
Sounds (IADS) [44] database. The IAPS, designed for studies on
emotion, is a database comprising 956 pictures of everyday
objects and scenes (e.g., household furniture). The IADS database
comprises 935 digitally recorded sounds from daily life (e.g.,
footsteps and babies crying). The pictures and the sounds in the
IAPS and IADS databases are annotated for valence and arousal,
respectively. The stimuli employed for this study were synthe-
sized from these 2 databases. A pair of stimuli with identical
parity of valence and arousal was combined and presented
to the participant. For example, a negative-high aroused sound
was given along with a negative-high aroused image [40]. Each
trial (stimulus episode) lasted 4 to 5 min. PD patients were
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optimally medicated to reduce tremors, and informed consent
was obtained from all participants. Data acquisition, PD
clinical history, ethics approval, and PD inclusion and exclu-
sion criteria are described in [8,39].

Data preprocessing

EEG outlier samples were discarded by limiting the signal
amplitude to 85 uV, followed by an infinite impulse response
(ITR) bandpass Butterworth filter to retain the 8- to 49-Hz
range [8]. We consider 8 to 49 Hz as the frequency range in
this study as the a (8 to 13 Hz), # (13 to 30 Hz), and y (30
to 49 Hz) spectral bands play an important role in emotion-
related activities, as compared to the 6 (1 to 4 Hz) and 6 (4
to 8 Hz) bands [40]. Additionally, the $ band activity (which
increases in the basal ganglia and decreases in the motor
cortex) is observed to contribute greatly to motor symptoms
in PD [45].

Each filtered EEG signal, recorded for 40 to 50 s [8,39], was
segmented into 5 s epochs to preserve temporal information
following [46], resulting in 8 to 10 segments per recording. This
process resulted in an average of 9.16 segments for 1,440 sam-
ples, leading to a total of 13,193 samples for feature extraction.
Each of these samples, termed as raw data henceforth, are of
dimension (14, 640). For classical ML methods, raw features
were z-normalized followed by principal components analysis
(PCA) to retain 95% data variance (PCA was not part of the
CNN pipeline).

Feature extraction from raw EEG

Spectral power vector

Power spectral analysis was performed to estimate EEG spectral
density upon spectral transformation [47]. On each epoch, a
Butterworth bandpass filter was applied to extract the a (8 to
13 Hz), f (13 to 30 Hz), and y (30 to 49 Hz) spectral bands. A
fast Fourier transform (FFT) was performed, followed by sum-
mation of squared FFT values within each of the 3 frequency
bands over the 14 electrodes to obtain the concatenated SPV
[, 1> V1> s Aras Pra 714)- Thus, each raw EEG sample of dimen-
sion (14, 640) was transformed to (1, 42).

Common spatial patterns

CSPs were extracted by learning a linear combination of the
original features [48]. Filters (transformations) were designed
so that the transformed signal variance was maximal for one
class and minimal for the other. Apart from dimensionality
reduction, CSPs enable recovery of the original signal by gath-
ering relevant information spread over multiple channels and
are, hence, popular EEG features [47]. We learn the spatial
transform w, which maximizes the function:

wX, XIwT  wew!

wX2X2TwT wCwT

(1)

Jesp(w) =

where C; and X; are, respectively, the spatial covariance matrix
and the bandpass-filtered signal matrix for class i. In Eq. 1, wX;
is the spatially filtered EEG signal for class i and inXiTWT is
the transformed signal variance, i.e., the band power of the fil-
tered signal. Thus, maximizing J,,(w) leads to spatially filtered
signals whose interclass band power ratio is maximal, and can
be solved via eigenvalue decomposition. The spatial filters w that
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Tablel. Overview of studies examining PD behavior and automated PD detection

Behavior studied References Year Description Findings Remarks

Implicit [66] 1995  PD and HC subjects presented PD patients were impaired  Purely behavioral study,
with emotional faces, and asked relative to controls on automated PD detection
to pose those expressions. making emotional faces. not attempted.

Explicit + Implicit [62] 1996  PD and HC subjects shown PD group showed Purely behavioral study,
emotional video clips and their considerably less facial automated PD detection
emotional reactions encoded via  activity than controls. not attempted.

Facial Action Coding System.
Emotional self-ratings compiled.

Implicit [67] 2003  PD and HC subjects presented Spontaneous facial Purely behavioral study,
with odors and their emotional activity, ability to pose and automated PD detection
reactions encoded via Facial mask facial expressions not attempted.

Action Coding System. impaired in PD.

Explicit + Implicit [13] 2009 24 PD and 24 HC subjects Reduced PD reactivity to ~ Behavioral study with

presented with emotional low-valence, high-arousal  no automated PD

pictures, and responses acquired  pictures; behavior was not  detection.
via self-ratings (explicit) and EMG  specific to any emotion

activity (implicit). category (e.g., fear and
disgust).
Explicit [11] 2010  PDand HC subjects presented PD emotion recognition Behavioral study with
with videos or text and asked to capability increased with  no automated PD
label the stimulus emotion. more channels, but PD detection.

Emotion recognition compared group performed worse
via standardized tests across the  than controls across all

lexical-semantic, prosody, and channels.
facial information channels.
Implicit [58] 2014  PD versus HC recognition via Mean accuracy of 87.9%  Routine and ecologically
(emotional EEG) emotional EEG analysis with SYM  achieved. valid setting. Only PD
classification. Dataset proposed versus HC classification
in [39] examined. attempted.
Implicit (rest-state [6.22] 2019, PD versus HC recognition via Mean recognition Resting-state EEG
EEG) 2020  resting-state EEG analysis using  accuracy of 99.1% compiled under highly

ML [22] and deep learning [6] achieved with SVWM [22],  controlled conditions,
approaches. Dataset proposedin  and 88.3% achieved with  ecologically invalid.

[22] examined. 1D-CNN [6].
Implicit [68] 2022  Categorical emotion detectionin  Mean categorical emotion  Routine and ecologically
(emotional EEG) PD and HC via emotional EEG recognition accuracy of valid setting. Only
analysis with a convolutional 83.2% achieved for PD emotion classification in
recurrent neural network. Dataset  data, and 86.0% achieved  PD and HC attempted.
proposed in [39] and 2 other for HC data.
publicly available datasets
examined.
Implicit Our work Dimensional and categorical Valence-specific mislabel-  PD and emotion EEG
(emotional EEG) emotion plus PD recognition via ing observed with PD data, recognition with
machine and deep learning while no arousal-related multiple classification
approaches. Dataset in [39] differences noted between methods. PD recogni-
examined. PD and HC groups. tion higher accuracy
Maximum accuracy/F1 with emotional EEG and

scores of 93%, 98%, and  comparable to prior
99% achieved for valence, work with resting-state
arousal, and PD recogni- EEG.

tion, respectively.
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maximize Jp(w) are the eigenvectors of the highest and lowest
eigenvalues for matrices C,, C,. Hence, w gives feature vectors
that are optimal for class discrimination. For each class i, the
variances of only a small number of signals most suitable for
distinguishing are used. Six filters corresponding to the 3 largest
and smallest eigenvalues are used for generating the CSP feature
of dimension (1, 6) for each (14, 640) EEG epoch, given by

f=log(wCyw") =log(var(wX,)). )

It is shown that the classification accuracy does not improve
with a larger number of filters [49].

Classical ML algorithms
Raw EEG data or extracted features were input to machine/
deep learning classifiers (Fig. 1). We explore the following ML
algorithms for classification.

« kNN, where the test sample is assigned the label corre-
sponding to the mode of its k-closest neighbors based on a
suitable distance metric [50].

« SVM, where input data are transformed to a high-dimensional
space where the 2 classes are linearly separable and the interclass
distance is maximal [51].

« Gaussian naive Bayes (GNB), a generative classifier assum-
ing class-conditional feature independence [52].

o Decision tree (DT), which uses a tree-like graph structure
where each leaf node represents a category label [53].

o Linear discriminant analysis (LDA), which linearly trans-
forms data to achieve maximal interclass distance [54].

« Logistic regression (LR), which maps the input to class
labels via the sigmoid function [55].

Model parameters are fine-tuned via grid search, upon per-
forming 10-fold cross-validation (10FCV) on the training set.
Table 2 presents the range of parameters explored for each ML
algorithm.

Convolutional neural network pipeline
We explored 1D-, 2D-, and 3D-CNN:s to learn EEG representa-
tions. Raw or extracted EEG features were fed to the 1D-CNN;

the feature dimensions input to the 1D-CNN with raw, spectral,
and CSP descriptors were (640, 14), 42, and 6, respectively.
However, this representation ignores the EEG spatial structure;
therefore, we synthesized the EEG image and EEG movie
descriptors to preserve the spatial structure.

Extracted SPVs were transformed to an EEG image as in [20].
EEG electrodes distributed on the scalp in 3D were projected
onto a 2D surface to capture the spatial activity distribution.
Azimuthal equidistant projection was used to preserve the rela-
tive interelectrode distance. Scattered scalp power measurements
were interpolated to derive a 32 X 32 pixel EEG image. Repeating
this process for the a, f#, and y bands produced 3 topo-maps,
which were then merged to form a 3-channel (32 X 32 X 3) EEG
image [20]. To learn the temporal EEG structure, given that
3D-CNNss effectively learn from video chunks [56], we synthe-
sized EEG movie samples comprising 5 images generated by
sliding nonoverlapping 1 s windows over the 5 s epoch. The
3D-CNN input dimensionality is 5 X 32 X 32 X 3.

With the recent success of CNNs for PD diagnosis, we exploit
an architecture inspired by [6] for 1D, 2D, and 3D data. The
general architecture of the 3-layered 1D/2D/3D-CNN employed

Inout Convolution Convolution Convolution Fully
.p layer-1 layer-2 layer-3 connected
x x Average Average ' Average

pooling-1 ! pooling-2 Softmax

ipoolin9-3 :
R B

| NU =

Fig.2.Basic architecture of the 1D/2D/3D-CNN.

Table 2. Parameters and their ranges considered for grid search optimization

Algorithm Parameters Values
kNN Number of neighbors 2,3,---,10
Distance metric Euclidean, Chebychev, Minkowski
Weight function Uniform weight function, distance weight function
SVM Regularization parameter (C) 10731072 ..., 10°
GNB Variance smoothing factor 10731072, -, 10°

DT Maximum depth of the tree
Function to measure the quality of the split
LDA Solver

Evenly spaced 50 numbers in the log-scale [107,10]
Gini impurity, entropy
Singular value decomposition, least squares solution, eigenvalue

decomposition

LR Norm for the penalty
Inverse of the regularization strength (C)

I,, No penalty
102107, --.,10°
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Table 3. Output dimensions of each layer in 1D-, 2D-, and 3D-CNN

1D-CNN
Layer Spectral CSP Raw 2D-CNN 3D-CNN
Convolution layer-1 42,16 6,16 640,16 32,32,16 5,32,32,16
Average pooling-1 21,16 3,16 320,16 16,16, 16 3,16,16,16
Convolution layer-2 21,32 3,32 320,32 16,16,32 3,16,16,32
Average pooling-2 11,32 2,32 160, 32 8,8,32 2,8,8,32
Convolution layer-3 11,32 2,32 160, 32 8,8,32 2,8,8,32
Average pooling-3 6,32 1,32 80,32 4,4,32 1,4,4,32
Flatten 192 32 2,560 512 512
Batch normalization 192 32 2,560 512 512
Fully connected 128 128 128 128 128
Softmax 20r6 20r6 20r6 20r6 20r6

for classification is shown in Fig. 2. Output dimensions for each
CNN layer are presented in Table 3. Three convolutional layers
convolve the input signal with a stride of 3 and comprise 16, 32,
and 32 filters of size 3, 3 X 3, and 3 X 3 X 3, respectively. Each
convolutional layer is followed by average pooling over 2-unit
regions. Batch normalization is applied to normalize prior acti-
vations, and a dropout of 0.1t00.5 is employed for regulariza-
tion. The dense layer comprises 128 neurons and is followed by
a softmax layer composed of 2 neurons (for dimensional emo-
tion and PD versus HC classification) or 6 neurons (for categori-
cal emotion recognition) conveying class probabilities. CNN
hyperparameters (learning rate €[107, ..., 107'], optimizer
€{SGD, Adam, RMSPropogation}, and dropout rate) were tuned
via 10FCV identical to the ML models.The code is available
online at https://github.com/ravikiranrao/EEG-Parkinson.

Performance evaluation

For all results, we report the weighted F1 measure or the weighted
mean of the per-class F1 scores, which accounts for the class
imbalance noted in valence and arousal classification.

Results and Discussion

This section details classification results on PD and HC data
for the valence and arousal dimensions [10] (val_results, asl_
results), followed by categorical emotion (multi_results), and
PD versus HC recognition (pdnc_results).

Valence classification
To examine emotional perception in PD, we first perform valence
classification by training binary classifiers with (a) PD, (b) HC, and
(c) combined PD and HC, or full EEG data. Happiness and surprise
are categorized as high valence (HV), while sadness, fear, disgust,
and anger data are grouped in the low valence (LV) category. The
HV:LV class ratio within PD, HC, and the full data is 1:2.
Valence classification results on PD, HC, and the full data
for various models are presented in Table 4. Higher F1 scores
were achieved with HC data, implying reduced discriminability
with PD EEG data. We discuss the results below. The valence
classification results of all ML algorithms on PD, HC, and full
data are shown in Table S2.
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Classification with PD data

The impact of descriptors on the efficacy of ML techniques is
evident from Table 4. A one-way analysis of variance (ANOVA)
to examine the effect of features (Raw, SPV, and CSP) on F1
scores confirms the impact of descriptor type (F(2,27) =
969.05,P < 0.0001). Comparing F1 scores from 10 classifier
runs, post hoc Tukey tests reveal significant differences between
the predictive powers of SPV versus CSP (P < 0.001), CSP ver-
sus Raw (P < 0.001), and SPV versus Raw features (P < 0.001).
Maximum F1 scores were achieved with CSPs, while only close-
to-chance classification performance is achieved with raw
features.

Higher F1 scores were observed with the 1D-CNN for all
features, revealing the superior learning ability of CNNs. A
one-way ANOVA reveals the minimal impact of different fea-
tures on 1D-CNN performance, even as CSP features achieve
the highest F1 (0.86). The 2D- and 3D-CNNs achieve even
higher F1 scores, conveying that the EEG image and movie
representations are most effective for valence prediction. The
3D-CNN achieves the highest F1 score (0.91).

Figure 3A presents model sensitivity and specificity with PD
data. Sensitivity denotes the true positive rate or proportion of
HV samples classified correctly, while Specificity denotes the
true negative rate or the proportion of correctly classified LV
samples. For ML algorithms, a significantly higher mean speci-
ficity (0.94) is observed than sensitivity (0.67). A similar trend
is observed for the 1D- and 2D-CNNs, with much higher speci-
ficity scores noted in both cases. Comparable mean specificity
(0.95) and sensitivity (0.85) scores are noted, however, with
the 3D-CNN. Overall, these trends convey reduced positive
valence recognition with PD data.

Classification using HC data

F1 scores similar to or higher than PD are obtained on HC data
for all features and methods (Table 4). The impact of features
on ML performance is confirmed by an ANOVA test (F(2,27) =
1382.90, P < 0.0001), with CSP features outperforming SPV
and Raw features. Higher F1 scores are noted with the 1D-CNN,
with all features performing similarly. The 2D- and 3D-CNNs
perform better than the 1D-CNN, with the 3D-CNN achiev-
ing the best mean F1 score (0.93).
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Table 4. Affect classification. F1 scores are of the form u + ¢. The best results among all ML algorithms are reported in the ML column,

corresponding to kNN and GNB (denoted using *).

ML 1D-CNN
Affect Data SPV CSP Raw SPV CSP Raw 2D-CNN 3D-CNN
Valence Full  078+0.01 081+001 055+001 085+001 082+002 088+011 089+0.06 0.91+0.05
PD 075+002 084+001 055+001 082+009 086+0.03 075+017 086+0.07 0.91+0.07
HC 081+002 084+001 056+001 085+0.08 088+004 090+011 091+0.07 0.93+0.05
Arousal Full  092+0.01 0.93+000 076+0.00* 095+003 092+0.01 095+007 0.97+0.02 0.97+0.02
PD 092+001 093+001 076+000 096+003 092+002 094+006 098+0.02 0.98+0.03
HC 091+001 094+001 076+0.00* 091+0.05 095+0.01 0.94+0.07 094+0.03 0.97+0.02
Categorical Full 064+001 072+001 018+001 076+010 069+0.02 0.77+0.22 0.82+0.09 0.83+0.09
emotions
PD 062+002 076+001 017+0.01* 0.77+008 080+0.05 081+021 0.84+010 0.88+0.09
HC 068+002 074+002 020+001 076+009 076+0.03 0.78+0.22 0.86+0.08 0.90+0.07

PD versus HC F1 comparison

Figure 3B compares the valence F1 scores obtained with PD and
HC data over all models, with CSP scores plotted for the ML
and 1D-CNN methods. While identical scores were achieved
on PD and HC data employing ML methods, marginally higher
F1 scores were noted on the HC data for the 1D-, 2D-, and
3D-CNNs. Overall, better classification is achieved with the HC
rather than the PD data. Figure 3C compares sensitivity for the
PD and HC data across models. With ML algorithms, the sen-
sitivity on PD data (0.67) is significantly lower than on HC data
(0.73) as pera t test (£(18) = 5.39, P < 0.0001). Lower sensitivity
scores are again noted on PD data with the 1D-, 2D-, and
3D-CNNs even if the differences are insignificant. Cumulatively,
our result trends reveal lower valence recognition sensitivity to
PD EEG data.

Arousal classification
To examine arousal perception in PD, we grouped the anger,
disgust, fear, happiness, and surprise data in the high arousal
(HA) category, and samples labeled sadness as constituting the
low arousal (LA) category as in the circumplex model [10]. The
HA:LA class ratio within PD, HC, and full data is, thus, 5:1.
Table 4 also presents arousal classification results with full,
PD, and HC data. Evidently, similar F1 scores were achieved
for these subsets. We again compare PD versus HC results. The
arousal classification results of all ML algorithms on PD, HC,
and full data are shown in Table S3.

Classification using PD data

The impact of the descriptors on ML classification perfor-
mance is confirmed by a one-way ANOVA (F(2,27) = 1332.94,
P <0.0001). Raw features performed worst (F1 = 0.76), while
CSP features achieved optimal arousal prediction (F1 = 0.93).
Significant F1 score differences were noted via a Tukey test for
CSP versus SPV (P < 0.005), CSP versus Raw (P < 0.001), and
SPV versus Raw (P < 0.001). Higher F1 scores were obtained for
the 1D-CNN with spectral features performing best, even if the
differences among descriptors were not significant. The 2D- and
3D-CNN models achieved an identical, near-ceiling F1 of 0.98.
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Figure 4A presents specificity (LA classification rates) and sen-
sitivity (HA classification rate) scores for the PD data. Significantly
higher sensitivity (0.97) than specificity (0.76) was observed for
the ML algorithms (P < 0.0001). This trend repeated for the
1D-CNN (P < 0.0001) and 3D-CNN (sensitivity = 0.98 > speci-
ficity = 0.91 with P < 0.01), while comparable measures were
achieved for the 2D-CNN. Overall, higher sensitivity than speci-
ficity was achieved on PD data with the different models.

Classification using HC data

CSP features produced a maximum F1 score of 0.93 with ML
methods on HC data. The 1D-CNN achieved a higher F1 0£0.95
with CSP features, but all features performed comparably. F1
scores of 0.94 and 0.97 were achieved with the 2D- and the
3D-CNN, respectively, revealing that the spectral EEG image and
movie descriptors effectively encode emotion information.

PD versus HC F1 score comparison

The F1 scores achieved with PD and HC data are presented in
Fig. 4B, with CSP results shown for the ML and 1D-CNN meth-
ods. Very similar F1 scores were found on PD and HC data for
ML algorithms. The 1D-CNN achieved a much higher score
with HC data (P < 0.0001), while the trend reversed for the
2D-CNN (PD F1 = 0.98 > HC F1 = 0.94, with P < 0.05).
Similar F1 scores with PD and HC data were again noted for
the 3D-CNN. Overall, result trends point to the lack of differ-
ences between EEG embeddings of the PD and HC cohorts
with respect to arousal.

Categorical emotion classification
Since reduced HV-LV discriminability was noted in the PD
patients, we explored categorical emotion recognition and the
nature of misclassifications with PD versus HC data. A uniform
distribution of 240 samples/emotion is available in this setting.
Multiclass emotion classification results across models with
full, PD, and HC data are shown in Table 4. An equal number of
samples were available for the sadness, happiness, fear, disgust,
surprise, and anger emotion classes for both PD and HC subjects.
F1 scores averaged over all emotion classes are shown. For most
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Fig.3.Binary valence classification. (A) Sensitivity and specificity with PD data across various models. (B) F1 scores with PD and HC data across various models. (C) Sensitivity
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Fig. 4.Binary arousal classification. (A) Sensitivity and specificity with PD data across models. (B) F1 on PD and HC data across models. Error bars denote SEM. sk st
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conditions, the highest scores were achieved with HC data, while  Classification with PD data

the lowest scores were achieved with full data. The multiclass As with valence and arousal, EEG features significantly impacted
emotion classification results of all ML algorithms on PD, HC, =~ ML performance as per a one-way ANOVA (F(2,27) = 4113.91,
and full data are shown in Table S4. P < 0.0001). CSP features produced the best F1 score (0.76),
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significantly outperforming SPV and Raw features (P < 0.001)
as per post hoc Tukey tests. For the 1D-CNN, raw EEG achieved
the best F1 score (0.81), which was marginally superior to that
of CSP and SPV features. Higher mean F1 scores of 0.84 and 0.88
were achieved with the 2D- and 3D-CNN, conveying accurate
emotion recognition with PD data.

Figure 5 depicts emotion-specific F1 scores obtained on
the PD and HC data across models, with CSP results pre-
sented for the ML and 1D-CNN models. For the PD data,
the ML methods produced the highest and lowest F1 scores
for sadness (F1 = 0.81) and surprise (F1 = 0.71), respectively,
and a significant variation in F1 scores for different emotions
was found per one-way ANOVA (F(5,54) = 8.68,P < 0.0001).
A significant effect of emotions on F1 scores was also noted
for the 1D-, 2D-, and 3D-CNNs (P < 0.05 in all cases).
Sadness was easiest to recognize with all 3 models (F1 =
0.87, 0.93, and 0.94 for the 1D-, 2D-, and 3D-CNN, respec-
tively), while disgust (F1 = 0.78), surprise (F1 = 0.80), and
tear (F1 = 0.85) were recognized worst by the 1D-, 2D-, and
3D-CNN, respectively.

Classification with HC data

Trends similar to those in the PD results were observed with
the HC data. CSP features produced the highest score (F1 =
0.74) with the ML methods, significantly outperforming SPV
and Raw features (P < 0.001 for both comparisons). All fea-
tures performed comparably with the 1D-CNN, while the
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EEG image and movie descriptors produced mean F1 scores
of 0.86 and 0.90, respectively, via the 2D- and 3D-CNN.

Misclassification analyses

Hitherto, (a) sensitivity—specificity analyses have shown lower
recognition rates for HV emotions, and (b) emotion-specific
results convey that surprise, disgust, and fear have often been
confounded with other emotions. We further examined mis-
classifications with PD and HC data to discover any underlying
patterns. Figure 6 depicts the maximum misclassification rate
and most mispredicted label per model and emotion class. For
instance, the first row shows that the sadness PD samples are
often misclassified as happiness by the best-performing ML,
1D-, 2D-, and 3D-CNN models, with the misclassification rates
specified in brackets. For HC data (2nd row), sadness is respec-
tively mislabeled as happiness, anger, and fear. We note that:

« The happiness and surprise high-valence emotions are
most commonly mislabeled as low-valence emotions, namely,
sadness, fear, and anger for both PD and HC data. As per
Fig. 6, misclassification rates are slightly higher with PD than
HC data.

» Among low-valence emotions, sadness is consistently pre-
dicted as happiness with PD data. Conversely on HC data, sad-
ness is often confounded with other low-valence emotions such
as fear and anger.

o Fear and disgust are often misclassified with both PD and
HC data. On HC data, fear is frequently confounded with
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Fig. 5. Emotion-wise F1 scores on HC (left) and PD data (right) across models. Error bars denote the standard error of mean. ##:#: =i = = and ns respectively imply

P<0.0001,P<0.001,P<0.01,P<0.05 and P> 0.05 as per a Tukey HSD test.
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Fig. 6. Misclassifications on PD and HC emotion data across models. First column denotes the actual emotion, while other columns denote predicted emotion with the
model specified on top. Upper and lower row pairs respectively denote emotions predicted with PD and HC data, and values in parentheses denote misclassification

rates. Green and red colors are used to code positive and negative valence emotions.

disgust, and disgust with fear and anger. With PD data, how-
ever, disgust is often confused with happiness and surprise, and
fear with happiness.

« From the above, one can infer a greater propensity to con-
found with opposite-valence emotions on PD data. Overall,
misclassification trends results convey that valence-related dif-
ferences are not effectively encoded in PD EEG responses.

PD versus HC classification

The above sections reveal some differences in the emotional
EEG characteristics of the PD and HC groups. We examined
whether the emotional EEG responses were discriminable for
PD versus HC classification. To this end, we attempted PD rec-
ognition from both emotion-specific and emotion-agnostic (or
full) EEG data acquired during the routine task of audiovisual
media consumption. Given that a balanced class distribution
is available in this setting (an equal number of PD and HC
samples are available as part of the full as well as emotion-
specific data), we further evaluated whether individual-specific
rather than group-specific signatures impacted PD recognition
performance by employing both the 10FCV and leave-one-out
cross-validation (LOOCV) procedures on the best-performing
2D-CNN model (see Table 5).

Emotion-agnostic and specific PD recognition results are
presented in Table 5. Empirical results show that accurate PD
recognition is achieved even with limited and emotion-specific
EEG data. Near-ceiling F1s are noted with the 2D-CNN, imply-
ing that PD and HC emotional responses are highly discrim-
inable upon learning from only a few training samples. Notably,
excellent discriminability between PD versus HC EEG encod-
ings is confirmed by the excellent (even if marginally lower) F1
scores achieved with the LOOCV data-split strategy, where
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subject-specific data are held out and evaluated on the trained
model. This observation indicates that the influence of subject-
specific signatures is marginal for PD recognition from emo-
tional EEG signals. The best recognition rates with the 10FCV
(F1 of 0.99 with sadness and fear) and LOOCV (peak F1 of 0.98
with anger) are noted with negative valence emotions, mirroring
prior findings concerning PD perception of negative emotions
[25,27,28].

Further examining sensitivity and specificity measures, bal-
anced recognition of PD and HC classes across models was
achieved mainly for the negative disgust, fear, and sadness emo-
tions. That negative emotions best reflect PD impairments has
been observed in prior studies [27,28]. Focusing on features
and models, spectral features achieved the best results with ML
methods. With the 1D-CNN, superior F1 scores were achieved
with all features even if no clear trends were discernible. Similar
to emotion recognition, the 2D-CNN again achieved optimal
PD recognition, demonstrating that the EEG movie features
optimally encode PD-related emotional differences.

Discussion summary

Valence

We examined PD valence perception, since valence is a funda-
mental emotional attribute [57]. While prior studies have found
valence-related differences between PD and HC groups via
their explicit responses to visual [27], verbal [30], and textual
[26] stimuli, we differently examined implicit emotional EEG
responses to this end. As per the results in Table 4 and Fig. 3,
valence classification trends with multiple features and meth-
ods convey reduced performance and lower sensitivity on PD
data in general. Therefore, PD data exhibit lower valence dis-
criminability and sensitivity.
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Table5. PD versus HC results. F1 scores (equals accuracy for balanced dataset) are of the form u +¢. Best ML results are achieved with the
kNN and GNB classifiers. GNB results are denoted with a * symbol. Best F1 scores are shown in bold.

ML 1D-CNN 2D-CNN

Data SPV CSP Raw SPV CSP Raw 10FCV LOOCV

Full 097+001 083+001 066+001 0.99+001 087+002 091+007 0.99+0.01 0.96+0.09
Sadness 097+001 092+001 058+003 097+002 094+002 096+006 0.99+001 0.95+0.12
Happiness 097+001 090+0.02 059+0.02* 091+008 092+002 095+009 098+002 0.97+0.06
Fear 096+001 093+002 061+003* 096+002 095+002 089+015 099+001 0.95+0.07
Disgust 096+002 091+002 059+001* 098+0.03 093+003 093+009 098+002 095+0.14
Surprise 095+0.01 091+0.03 060+0.02* 092+003 094+002 094+010 097+003 094+0.16
Anger 096+001 092+001 059+0.03* 098+001 094+003 087+014 098+0.02 0.98+0.03

Lower PD sensitivity is consistent with the findings in [29],
where PD patients are found to have deficits in processing both
positive and negative emotions. Dysfunction of the basal gan-
glia thalamocortical circuits in PD patients impairs their gen-
eral emotional valence recognition [2]. With respect to models
and features, CNNs expectedly achieved higher F1 scores than
ML methods (see Table 4), confirming that they can efficiently
learn spatiotemporal EEG patterns. CSP features predominantly
achieve the best scores, and their utility in EEG-based analysis
is well known [48]. The EEG movie descriptor optimally
encodes spatiotemporal patterns in spectral EEG.

Arousal

With respect to arousal, Miller et al. [13] observed muted reac-
tivity or fewer startled eye blinks from PD patients to high-
arousal, low-valence aversive pictures. Similar findings were
reported in [11,26], where PD patients showed deficits in rec-
ognizing emotions from lexical, prosody, and facial cues. While
these findings are based on implicit EMG data and/or explicit
self-ratings, our inferences are based on EEG classification pat-
terns. Given the identical distributions for the PD and HC
classes and corresponding F1 comparisons, our results convey
that very comparable F1 scores are obtained for the PD and
HC groups across models and features, conveying little differ-
ence between their EEG encodings with respect to arousal.

Performance of models and features

Sensitivity and specificity scores observed for PD data also
convey an interesting trend. Given the imbalanced class pro-
portions for both the valence and arousal conditions, significant
sensitivity versus specificity disparities are noted particularly
for the ML and 1D-CNN models. However, these differences
become less conspicuous for the 2D- and 3D-CNN models,
conveying that they are able to efficiently learn minority-class
representations. Regarding algorithms and features, F1 scores
gradually improve while advancing from the ML algorithms
to the 3D-CNN. CSP features perform best with ML algo-
rithms, but mixed results are observed for the 1D-CNN. The
EEG image and movie descriptors achieve a maximum and
identical F1 score of 0.98 for arousal, with the 3D-CNN produc-
ing the maximum F1 of 0.93 for valence, showing their efficacy
in learning emotional EEG representations.
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Categorical emotion recognition

We creatively examined categorical emotional classification using
EEG data from both PD and HC participants. Prior studies on
PD emotional perception typically examined facial expression
recognition tasks [12,26,28] or studied physiological signals
along with self-assessment reports to understand emotional defi-
cits [32,34]. These studies observe PD impairment in recognizing
negative emotions such as sadness, fear, anger, and disgust.

We performed categorical emotion recognition to better
understand which emotions are recognized better/worse with PD
and HC data. Our results in the “Classification with PD data” sec-
tion reveal that while sadness and happiness were well recognized
with both PD and HC data, fear, disgust, and surprise were poorly
recognized with the PD EEG data. Disturbances in the orbitofron-
tal cortex and the anterior cingulate cortex, which are active in
negative emotion processing, can be attributed to these deficits
[29]. We then studied the nature of misclassifications for each
emotion class. Misclassification results in Fig. 3 show frequent
confounds among opposite-valence emotions with PD data, indi-
cating weaker valence encodings in emotional PD EEG responses.

With respect to features and models, the trends are consistent
with valence and arousal classification. We generally observe a
steady increase in emotion-specific and overall F1 scores as we
progress from the classical ML methods to the 3D-CNN. The
CSP and raw EEG features produce the best performance with
the ML and 1D-CNN approaches, respectively. The 2D- and
3D-CNN models, however, tend to achieve higher F1 scores,
implying that spatiotemporal spectral EEG patterns best encode
emotional information.

PD versus HC classification

To our knowledge, only 1 study [58] has performed PD recogni-
tion from emotional EEG signals. In it, a mean accuracy of 87.9%
was achieved employing ML classifiers and a 10FCV data-split
strategy (see Table 1). Others [6,22] have performed PD versus
HC classification from resting-state EEG signals, which is an
ecologically invalid setting requiring a highly controlled envi-
ronment for EEG acquisition. In this regard, we attempted PD
recognition from both emotion-specific and emotion-agnostic
(or full) EEG data acquired during the routine task of audiovi-
sual media consumption. Recent studies [59-61] observe that
individual-specific, rather than emotion-specific, signatures are
utilized by ML models to achieve superior recognition on small
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datasets, and that recognition performance is adversely impacted
when subject-independent train and test sets are used for evalu-
ation. To examine if this observation holds for PD recognition,
we employed both the I0FCV and LOOCV data-split strategies
to train and evaluate the best-performing 2D-CNN model.

The empirical results presented in Table 5 show that accurate
PD recognition is achieved even with emotion-specific EEG
data. Near-perfect F1s are noted with the 2D-CNN, implying
that PD and HC emotional responses are highly discriminable
upon learning from only a few training samples. Furthermore,
PD versus HC discriminability is not influenced by individual
signatures as conveyed by the excellent recognition perfor-
mance achieved with the LOOCYV data-split strategy, where the
test subject data are held out from training. While the best rec-
ognition rates with the I0FCV procedure are obtained for the
sadness and fear emotions, a peak F1 score of 0.98 is achieved
for anger with LOOCV. The fact that maximum PD versus HC
discriminability can be noted for negative emotions mirrors
similar findings in [12,26-28].

Further examining sensitivity and specificity measures, bal-
anced recognition of PD and HC classes across models was
achieved mainly for the negative disgust, fear, and sadness
emotions, reinforcing that negative emotions best reflect
PD impairments [27,28]. Focusing on features and models,
spectral features achieved the best results with ML methods.
With the 1D-CNN, superior F1 scores were achieved with all
features even if no clear trends were discernible. Similar to
emotion recognition, 2D-CNN again achieved optimal PD
recognition, demonstrating that the EEG movie features opti-
mally encode PD-related emotional differences.

Conclusion

PD patients may often have difficulty expressing their emotions
and internal feelings in real life owing to (a) PD effects especially
in the advanced stages of the disease and (b) the effect of associ-
ated medications. Given these limitations, an assistive and sustain-
able diagnostic tool based on noninvasive detection of emotional
disturbances can facilitate treatment and help improve life quality
for PD patients. While many studies identify PD-related impair-
ments based on the patients’ explicit and implicit responses
[11,13,62], or cognitive dissimilarities based on resting-state EEG
[4,6,22], we differently examined emotional EEG responses to
perform both emotion and PD recognition.

While studies examining facial behavior and resting-state EEG
[4] typically derive their findings based on statistical patterns
observed for the PD and HC groups, our inferences are entirely
derived from classification patterns. Interesting trends and simi-
larities with prior work are revealed in our analyses. Dimensional
emotion recognition experiments conveyed reduced discrim-
inability with PD EEG data, while arousal-related differences
vis-a-vis the HC group were not apparent. Furthermore, categori-
cal emotion recognition results revealed that disgust, fear, and
surprise were associated with low recognition rates on PD data,
while sadness was well recognized. Mislabeling analyses showed
frequent confounds among opposite-valence emotions with PD
data, but not with HC data. Reduced recognition of low-valence
emotions and confounds noted with positive emotions mirror
with deficits noted in the perception of these emotions from pic-
torial [13] and prosodic stimuli [11].

Given some differences in emotion perception between the PD
and HC groups, we then examined if the PD versus HC emotional
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responses were discriminable, and if this discriminability differed
across emotions. The empirical results revealed that differences
were apparent for both emotion-specific and emotion-agnostic
data, with high F1 scores achieved in all conditions. Here, again,
the maximum recognition performance was achieved for negative
emotions; also, very similar sensitivity and specificity rates across
models were noted for negative emotions such as disgust, sadness,
and fear, reinforcing that the PD versus HC encodings were most
discriminable for these emotions.

With respect to features and models, CSPs considerably out-
performed spectral features with ML models for emotion recog-
nition. Conversely, spectral descriptors outperformed CSPs for
PD versus HC classification. The efficacy of spectral features for
isolating PD characteristics has been observed in prior studies
[63]. No single feature performed best with the 1D-CNN, even
ifthe 1D-CNN consistently outperformed classical ML methods.
The 2D- and 3D-CNN models consistently achieved optimal
recognition performance, conveying that spectral spatiotemporal
models best encode EEG patterns as noted in [20,56].

Our key finding is that both emotion and PD recognition
can be reliably performed from EEG responses passively com-
piled during audiovisual stimulus viewing. Given that we effort-
lessly interact with media routinely, EEG signals can be captured
easily over longer time intervals as compared to resting-state
EEG, which can practically be acquired only over short epi-
sodes. Also, while many EEG differences between PD and HC
groups have been noted from resting-state analysis, the exact
relation between EEG and motor symptoms is unknown [4].

Most empirical results presented in this paper are generated
viaa 10FCV strategy, given the small dataset size and imbalanced
class distribution. Nevertheless, the LOOCV procedure adopted
for the PD versus HC classification problem reveals that the EEG
encodings are relatively robust to individual idiosyncrasies. A
limitation of our study is that we analyze data compiled from a
limited number of PD subjects with only mild-to-moderate dis-
ease severity (Hoehn and Yahr scale [64] of 1 to 3). Future work
will also focus on severity levels 4 and 5. While perceptual dif-
ferences between PD versus HC subjects were captured via clas-
sification results, an assistive diagnostic tool should also be able
to provide explanations behind decision-making. Future work
will focus on generating explanatory predictions, building on
recent work [65] in this regard.
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